Nucleic Acids

Nucleotides are the building blocks of nucleic acids such as DNA and RNA. Individual nucleotides are each composed of a nucleoside (A, T/U, G, or C), either a deoxyribose (DNA) or ribose (RNA) sugar, and a phosphate group. Nucleotides also serve as energy storage molecules in the cell, primarily in the form of ATP and GTP.

Carbohydrates

Carbohydrates are important to all organisms structurally and as a source of energy. Carbohydrates can exist as simple sugars or as long polymers of simple sugars. The carbohydrate cellulose is the most abundant naturally-occurring polymer.

Proteins

Proteins are built from amino acids and are the most diverse class of molecules in the cell. They play a role in the structure and function of the cell, communication between cells, and transport of other molecules in and out of cells. Proteins perform nearly all the biochemical functions of a cell.

Lipids

Lipids are a structurally diverse class of molecules that share the common feature of being relatively insoluble in water. In cells, lipids serve as an energy source and as a form of stored energy (triglycerides), an essential component of cell membranes (phospholipids and cholesterol), and important signaling molecules within and between cells (steroids).

20 Common Amino Acids

- Alanine (Ala)
- Arginine (Arg)
- Aspartic acid (Asp)
- Asparagine (Asn)
- Cysteine (Cys)
- Glutamine (Gln)
- Glutamic Acid (Glu)
- Glycine (Gly)
- Histidine (His)
- Isoleucine (Ile)
- Leucine (Leu)
- Lysine (Lys)
- Methionine (Met)
- Phenylation (Phe)
- Proline (Pro)
- Serine (Ser)
- Threonine (Thr)
- Tryptophan (Trp)
- Tyrosine (Tyr)
- Valine (Val)
- Thymine (DNA)
- Uric (RNA)
- Cytosine
- Guanine
- Uric (RNA)
Cell Models

Prokaryote: Bacterium
- Ribosomes
- Chromosome/DNA
- Cytoplasm
- Cell Wall
- Cell Membrane

Eukaryote: Animal
- Ribosomes
- Endoplasmic Reticulum
- Mitochondrion
- Nucleus
- Cytoskeleton

Eukaryote: Plant
- Ribosomes
- Cell Membrane
- Endoplasmic Reticulum
- Mitochondrion
- Nucleus
- Cytoplasm

Organelles

<table>
<thead>
<tr>
<th>Prokaryotic and Eukaryotic</th>
<th>Prokaryotic: Bacterial</th>
<th>Eukaryotic: Animal</th>
<th>Eukaryotic: Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Membrane</td>
<td>Lypids > Proteins > Carbohydrates</td>
<td>Semipermeable surface for exchange of molecules and substances</td>
<td>Cell Membrane</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>Prokaryote: Bacteria</td>
<td>Prokaryote: Bacterial</td>
<td>Prokaryote: Bacterial</td>
</tr>
<tr>
<td>Chromosomes (DNA)</td>
<td>Nucleic Acids > Proteins</td>
<td>Code for everything including building proteins for cell growth and maintenance</td>
<td>Nucleus</td>
</tr>
<tr>
<td>Ribosome</td>
<td>Proteins > Nucleic Acids</td>
<td>Build proteins; site of translation</td>
<td>Nucleus</td>
</tr>
<tr>
<td>Cell Wall</td>
<td>Carbohydrates > Proteins</td>
<td>Structural support for maintaining cell shape</td>
<td>Nucleus</td>
</tr>
<tr>
<td>Not in animal cells</td>
<td>Bacteria: peptidoglycan; Plants: Cellulose; Fungi: Chitin</td>
<td>Nucleus</td>
<td></td>
</tr>
</tbody>
</table>

Prokaryotic Membrane-Bound Organelles
- **Nucleus**
 - Houses chromosomes; site of transcription
- **Smooth Endoplasmic Reticulum**
 - Builds and breaks down fats and steroids; Breaks down toxins; Regulates calcium ion levels
- **Rough Endoplasmic Reticulum**
 - Site of protein synthesis; tagging, folding, quality control, and dispatch
- **Golgi Complex**
 - Final preparation and tagging of proteins for delivery to organelles or membrane
- **Endosome**
 - Transport vesicle
- **Lysosome**
 - Breakdown of ingested materials or non-functional organelles or macromolecules for recycling
- **Peroxisome**
 - Catabolism of long chain fatty acids; Reduction of hydrogen peroxide (ROS) by catalase; glyoxylate cycle in plants

Eukaryotic Membrane-Bound Organelles
- **Mitochondrion**
 - Production of ATP by Citric Acid Cycle and Electron Transport Chain (ETC); An important component of the catabolism of glucose: C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + 38 ATP
- **Chloroplast**
 - Production of carbohydrates by light reactions and Calvin Cycle (dark reactions). An important component in the anabolism of glucose: 6H₂O + 6CO₂ + light energy → C₆H₁₂O₆ + 6O₂

Mitosis

Prophase

Metaphase

Anaphase

Telophase

Cytokinesis

Meiosis

Prophase I

Metaphase I

Anaphase I

Telophase I

Cytokinesis

Prophase II

Metaphase II

Anaphase II

Telophase II

Cell Cycle Mnemonics

<table>
<thead>
<tr>
<th>Pro</th>
<th>Prepare</th>
<th>Telo</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Prep</td>
<td>Tel</td>
<td>End</td>
</tr>
<tr>
<td>Meta</td>
<td>Middle</td>
<td>Kines</td>
<td>Separ</td>
</tr>
<tr>
<td>Ana</td>
<td>Away</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marian University is sponsored by the Sisters of St. Francis, Oldenburg, Indiana. JUN 2017